top of page

2021 Publications

Exifone Is a Potent HDAC1 Activator with Neuroprotective Activity in Human Neuronal Models of Neurodegeneration

Genomic instability caused by a deficiency in the DNA damage response and repair has been linked to age-related cognitive decline and neurodegenerative diseases. Preventing genomic instability that ultimately leads to neuronal death may provide a broadly effective strategy to protect against multiple potential genotoxic stressors. Recently, the zinc-dependent class I histone deacetylase (HDAC1) has been identified as a critical factor for protecting neurons from deleterious effects of DNA damage in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Translating these observations to a novel neuroprotective therapy for AD, ALS, and FTD may be advanced by the identification of small molecules capable of increasing the deacetylase activity of HDAC1 selectively over other structurally similar HDACs. Here, we demonstrate that exifone, a drug previously shown to be effective in treating cognitive deficits associated with AD and Parkinson's disease, the molecular mechanism of which has remained poorly understood, potently activates the deacetylase activity of HDAC1. We show that exifone acts as a mixed, nonessential activator of HDAC1 that is capable of binding to both free and substrate-bound enzyme, resulting in an increased relative maximal rate of HDAC1-catalyzed deacetylation. Exifone can directly bind to HDAC1 based upon biolayer interferometry assays with kinetic and selectivity profiling, suggesting that HDAC1 is preferentially targeted compared to other class I HDACs and the kinase CDK5, which have also been implicated in neurodegeneration. Consistent with a mechanism of deacetylase activation intracellularly, the treatment of human induced pluripotent stem cell (iPSC)-derived neuronal cells resulted in globally decreased histone acetylation. Moreover, exifone treatment was neuroprotective in a tauopathy patient iPSC-derived neuronal model subject to oxidative stress. Taken together, these findings reveal exifone as a potent activator of HDAC1-mediated deacetylation, thereby offering a lead for novel therapeutic development aiming to protect genomic integrity in the context of neurodegeneration and aging.

Phosphorylation-Dependent control of arc protein by TNIK

Activity-regulated cytoskeleton-associated protein (Arc) is an immediate-early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders.

bottom of page